skip to main content


Search for: All records

Creators/Authors contains: "Crose, Michael"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For many clinical applications, such as dermatology, optical coherence tomography (OCT) suffers from limited penetration depth due primarily to the highly scattering nature of biological tissues. Here, we present a novel implementation of dual-axis optical coherence tomography (DA-OCT) that offers improved depth penetration in skin imaging at 1.3 µm compared to conventional OCT. Several unique aspects of DA-OCT are examined here, including the requirements for scattering properties to realize the improvement and the limited depth of focus (DOF) inherent to the technique. To overcome this limitation, our approach uses a tunable lens to coordinate focal plane selection with image acquisition to create an enhanced DOF for DA-OCT. This improvement in penetration depth is quantified experimentally against conventional on-axis OCT using tissue phantoms and mouse skin. The results presented here suggest the potential use of DA-OCT in situations where a high degree of scattering limits depth penetration in OCT imaging.

     
    more » « less
  2. Abstract

    Changes in the deformability of red blood cells can reveal a range of pathologies. For example, cells which have been stored for transfusion are known to exhibit progressively impaired deformability. Thus, this aspect of red blood cells has been characterized previously using a range of techniques. In this paper, we show a novel approach for examining the biophysical response of the cells with quantitative phase imaging. Specifically, optical volume changes are observed as the cells transit restrictive channels of a microfluidic chip in a high refractive index medium. The optical volume changes indicate an increase of cell’s internal density, ostensibly due to water displacement. Here, we characterize these changes over time for red blood cells from two subjects. By storage day 29, a significant decrease in the magnitude of optical volume change in response to mechanical stress was witnessed. The exchange of water with the environment due to mechanical stress is seen to modulate with storage time, suggesting a potential means for studying cell storage.

     
    more » « less